

AimSafety™ PM₅₀₀ Multi-Gas Monitor w/ Pump User Instructions

2 | Page

TABLE OF CONTENTS

1	Р	Product Overview	6
	1.1	I. Introduction	
2	S	Specifications	6
		I. LCD Display Symbols	
3		Activation	
_	3.1		
	3.2		
4	P	Pump	
	4.1	·	
	4.2	·	
	4.3	·	
5	С	Display	10
	5.1	· ·	
	5.2	1 3	
	5.3	i J	
	5.4	l. Battery Display	16
6	S	Settings and Operation	17
	6.1		
	6.2		
	6.3		
	6.4		
7	L	_og	23
8	C	Certification	24
9	Е	Error Codes	26
10)	Troubleshooting	26
11		Maintenance & Cleaning	
		_	
12		Response Factors (RF)	
	12. 12.	•	
13	3	Product limited warranty	52

3 | Page

Warning

- > Do not replace or change any parts. Unauthorized replacement of parts and/or maintenance will void the warranty.
- Remove any debris on the surfaces of the sensor, display, LED's, buzzer and pump hole before use.
- > Test the performance of the gas sensor with a bump test and using calibration gas regularly.
- > Test whether the LED, alarm and vibration function properly on a regular basis.
- > Using the device in conditions outside the certified, humidity and pressure range may cause the instrument to malfunction or fail.
- The sensors inside the device may indicate the gas concentration differently according to the temperature, pressure and humidity they are in. Please make sure to calibrate the detector in a similar environment in which it will be used but ensure that it is in clean air.
- Extreme changes in temperature may cause drastic changes of the gas concentration such as using the detector where there is a huge difference between the inside and outside temperature. Do not use the device until the readings are stable.
- Severe pressure or impact may cause drastic changes of the gas concentration. Do not use the device until the readings are stable. Severe pressure or impact may cause also malfunction in the sensor or the device.
- The default alarm levels are set according to U.S. standards but may need to be changed to meet local requirements.
- Charging or replacing the battery must be done in a safe area where there is no risk of explosion or fire. The use of spare parts not supplied by AimSafety will void the warranty.
- > IR communication with the PM Link should only be done in a safe area where there is no risk of explosion or fire.
- > Do not expose the detector to poisons such as alcohol and citrus based products. Poisons may damage the device's accuracy and response time.
- > If you suspect sensor poisoning, bump test and calibrate the instrument before further use.
- > The detector is designed for use only in potentially explosive atmospheres where oxygen concentrations do not exceed 20.9% VOL. Oxygen deficient atmospheres (<10% VOL) may suppress some sensor outputs.
- Recharge the battery before it is discharged to preserve the life of the battery.
- Charge the detector in ambient temperature ranged from 32°F to 104°F.
- The efficiency of the rechargeable battery decreases by approximately 20% after two years of normal use.
- > Do not use a charging adapter unless it is supplied by AimSafety.
- > Do not calibrate the device while or immediately after charging the battery.
- Do not calibrate if recently exposed to conditions representative of the IP rating.
- Do not perform the calibration during the sensor warmup process after turning on the device.
- Sudden changes in atmospheric pressure may cause oxygen concentration to vary temporarily.
- > Before each use, confirm that the pump port is clear of any obstructions, debris, or blockage.
- If the pump port is blocked by any pollutants, measurements may be lower than the actual concentration.

- If a charge-generating mechanism is present, the exposed metallic part on the enclosure is capable of storing a level of electrostatic charge that could ignite IIC gases. Therefore, the user / installer shall implement precautions to prevent the build-up of electrostatic charge. This is particularly important if the equipment is being used in a CID1 or Zone 0 environment.
- The equipment shall only be charged while in a non-hazardous area, using a charger specifically supplied for use with the unit, approved as SELV or Class 2 equipment against IEC 60950, IEC 61010-1 or an equivalent standard. The maximum voltage and current from the charger shall not exceed 6.3 Vdc plus tolerances and 1.2 A respectively and shall be further limited by the charging system to Um = 6.3 Vdc.
- The battery and sensors should only be replaced by AimSafety or authorized service providers in a safe zone that is free of hazardous gases.

Caution

- Please read the manual carefully.
- The device is not a gas analyser, but a gas detector designed to detect the presence of a gas.
- If the instrument fails to pass calibration, stop using and consult the manufacturer.
- Test the device every 30 days under the atmospheric environment of clean air without gases.
- To clean the exterior of the device use only a soft cloth and do not use chemical detergents.

Reference

- For flammable gas equipment installation, operation and maintenance information, please refer to IEC
- Conversion for %LEL and %vol follows the ANSI/NFPA 497 standard.

5 | Page

Product Overview

1.1. Introduction

The PM500 is a portable sampling type gas detector that measure up to six (6) gases simultaneously to protect workers from the disasters caused by the Oxygen deficiency, Toxic gas poisoning and gas explosions.

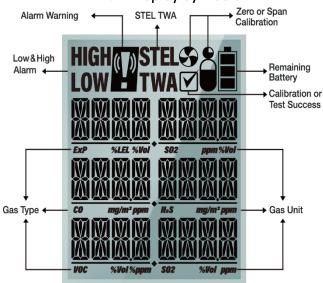
This series of portable monitors detects multiple toxic and flammable gas combinations. It displays their concentrations and raises an alarm (visual, vibrating, and audible) when the risk occurs.

The detector with a catalytic bead / pellistor sensor (LEL) will operate continuously for more than 30 hours when fully charged. The detector with an NDIR sensor (LEL) will operate continuously for around five days when fully charged under normal operating conditions.

Specifications 2

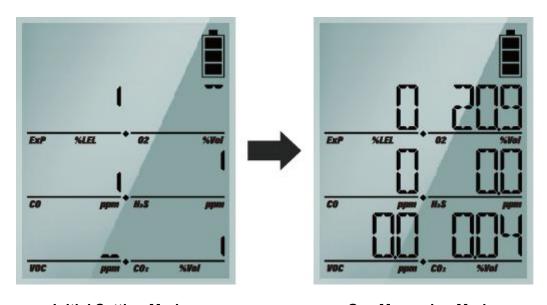
Model	PM500-IR, PM500-P, PM500-IR-XX, PM500-P-XX (XX denotes additional gases)			
Display	Segment LCD Backlight Display			
Key	Three Operation and Programming Keys			
Gas Type	Toxics	02	LEL	VOC
Measure Type	Electrochemical	Electrochemical	Catalytic Bead or Infrared	Photoionization 10.6 eV
Range	CO: 0-500 PPM H2S: 0-100 PPM SO2: 0-50 PPM NH3: 0-100 PPM NO2: 0-20 PPM	0-30% VOL	0-100% LEL	0-4,000 PPM
Sensor life	> 2 years	2 years	PM500-IR: > 5 years PM500-P: > 2 years	2 years
Alarm Setpoints (Low / High)	CO: 35 / 100 PPM H2S: 10 / 15 PPM SO2: 2 / 5 PPM NH3: 25 / 50 PPM NO2: 2.5 / 5 PPM	19.5 / 23.5% VOL	10 / 20% LEL	10 / 20 PPM
Alarm Setpoints (TWA / STEL)	CO: 35 / 200 PPM H2S: 10 / 15 PPM SO2: 5 / 5 PPM NH3: 50 / 35 PPM NO2: 1 / 1 PPM			
Calibration Span Concentration	CO: 100 PPM H2S: 25 PPM SO2: 10 PPM NH3: 50 PPM NO2: 10 PPM	18% VOL	50% LEL CH4	100 PPM (isobutylene)
Alarm	Backlight LCD alarm disp LED indicator	lay	Audible buzzer (90dB at Vibrating alarm	t 10cm)

Data Logging	Event Log: 30 EA Calibration Log: 30 EA Bump Log: 30 EA Data Log: Two Months or longer
Dimension	5.7" (L) x 3.0" (W) x 1.7" (H) (14.6 cm x 7.7 cm x 4.3 cm)
Weight	17.3 oz. (490g)
Mounting Type	Clip
Ingress Protection	IP67 (IP ratings do not imply that the equipment will detect gas during and after exposure to those conditions)
Sampling	Built-in pump
Battery Type	Rechargeable Lithium-Ion Nominal Voltage: 3.7V, Nominal Capacity: 4000mAh Maximum Charging Voltage: 6.3V
Operating Time	PM500-IR: 5 days PM500-P: 30 hours
Enclosure Material	Thermoplastic Polyurethane and Polycarbonate
Accessories	PM Link, Sampling Probe, PM500-STN
Flow Rate	250~300cc
	Operating Conditions
Temperature	-4°F to 122°F (-20°C to 50°C)
Humidity	10%~90% RH (Non-condensing)
Pressure	80-120KPa
	Storage Conditions
Temperature	32°F to 68°F (0°C to 20°C)
Humidity	15%~90% RH (Non-condensing)
Pressure	90-110KPa
Shelf Life	Six Months



LCD Display Symbols

HIGH	High Alarm	\$	Fresh Air Calibration
LOW	Low Alarm		Device Stabilization & Configuration View & Calibration Succeeded
(7)	Alarm Condition	å	Standard Gas Calibration
STEL	STEL Alarm		Remaining Battery
TWA	TWA Alarm		



3 Activation

3.1. Power On the Monitor

Press the Power/Enter button for 2 seconds and SYS boot is displayed. Once the device turns on, the version and LCD are displayed. After 10 seconds of system test, the warmup will begin. If errors occur during system test, the device will indicate an error code. (Regarding error code, please refer to Chapter 8 (Failure and Escape).

Initial Setting Mode

Gas Measuring Mode

The exact warmup time differs depending on which sensor types are fitted. After completing the warmup, the device goes into the measurment mode.

CAUTION

To check the gas response performance of the sensor, it is recommended to do a bump test with gas concentration higher than the alarm set point. It is recommended to do a bump test before each use of the device. Users are required to check if the device is working properly and ensure the pump port is clear of any obstructions, debris, or blockage.

3.2. Powering Off the Monitor

To turn off, from the main screen, press and hold down the Power/Enter button for three seconds. The display counts down three seconds with the "SYS OFF" message. The device will not turn off unless you hold down the button for longer than three seconds.

REV - 1.0

[34-2900-0000-2]

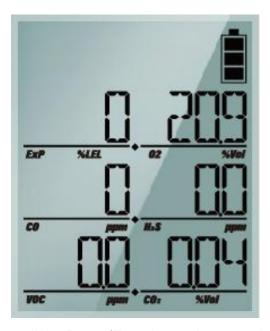
Pump

4.1. Pump Test

When you change the gas tube or reconnect to the detector, test the sampling system by blocking the end of the tube. When the flow is blocked, warning alarm will be activated and the device will continue to alarm. If no alarm activates, this indicates a leak in the system or a failure of the pump.

Filter Replacement 4.2.

The gas inlet is protected by the particulate filter and membrane filter. If the filter is blocked, the sampling system will be unable to work and the warning alarm will be activated sounding every second.


Visually inspect the filter to ensure the filter is free of debris or obstructions. Discoloration of the filter is the best indicator that the filter needs replacing. If the filter needs to be replaced, loosen the two screws and replace with a new filter. After replacement, reassemble the screws and test the pump again before continuing to use it.

4.3. Regulator

The detector has an internal pump that pulls in a sample. When performing a calibration or bump test, a demand flow regulator should be used with the gas cylinder.

Display 5

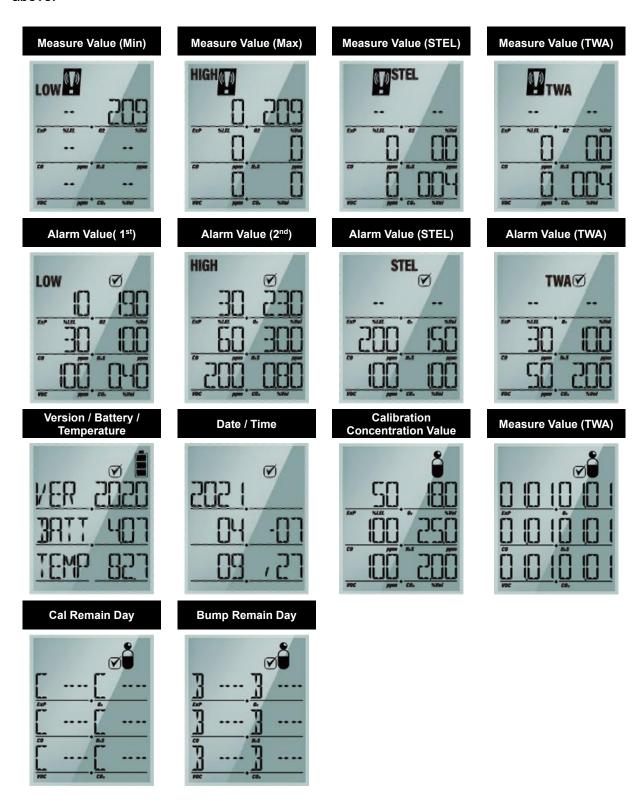
Measuring Mode

After stabilization, the device goes into the normal measuring mode. The gas concentration and the battery power level are displayed on the LCD display. Oxygen is displayed in %VOL, combustible gases in %LEL and toxic gases in PPM (parts per million). When the gas concentration levels change, the value is displayed in real time. When the levels exceed the threshold for either LOW or HIGH alarms (or STEL/TWAL where applicable), the display icons of LOW, HIGH, STEL or TWA flash regularly. The audible, visual and vibration alarms will also activate.

When the concentration detected by the device returns below the alarm threshold, the alarms stop. The alarm icon will continue to indicate that an alarm has occurred

until the Power/Enter button is pressed to acknowledge it.

10 | Page 1504 W 51st St.



[34-2900-0000-2]

5.2. Display Mode

Pressing the \triangle or ∇ button steps the display through fourteen different display modes as shown above.

5.2.1. Display Mode in Detail

LCD Display	Description in Detail
CO NAME OF SAME OF SAM	 Measuring Mode (Basic Display) Display the current gas levels of the atmosphere Battery power level icon is displayed.
ENP NAME BE SIDE OF THE PROPERTY OF THE PROPER	 A low gas alarm has been triggered. *In ambient air, the Oxygen level normally indicates 20.9%vol.
HIGH DE SEE MAN DE SE MAN D	 A high gas alarm has been triggered. *In ambient air, the Oxygen level normally indicates 20.9%vol.
ESP NAME OF THE PROPERTY OF TH	- A STEL (Short Term Exposure Limit) gas alarm has been triggered indicating the 15 minute average exposure limit has been exceeded.
EAP MARE DE MANU CO PRO CON NAME POC PRO CON NAME	- A TWA (Time weighted average) gas alarm has been triggered indicating the 8 hour average exposure limit has been exceeded.

LCD Display	Description in Detail
LOW Suppose Cos Substance The Cost of Cost o	- Display the preset low alarm levels.
HIGH 30, 230 50, 300 co 200, 5500 100 ypm co, 5500	- Display the preset high alarm levels.
STEL	- Display the preset STEL levels.
TWA V	- Display the preset TWA levels.
VER_2020 38TT_407 TEMP_827	- Firmware Version, Current battery voltage, Current temperature (Fahrenheit)

[34-2900-0000-2]

LCD Display	Description in Detail
202 I ® OH -07	- Date / Time
50 480 00 250 co 0 50 Not	- Calibration Concentration Value
	- Last Calibration Date (01.01= January 1 st)
207 6. CO;	- Remaining time to next calibration date when the calibration interval is configured. (Default: N/A)
	- Remaining time to next bump test date when the bump interval is configured. (Default : N/A)

14 | Page

5.3. Alarm Display

Туре	Trigger Condition	LCD Display	Alarm Sound
Low Alarm	Exceed LOW alarm value	icon & gas concentration levels displayed	BUZZER, LED Vibration
High Alarm	Exceed HIGH alarm value	icon & gas concentration levels displayed	BUZZER, LED Vibration
TWA Alarm	Exceed TWA alarm value	icon & gas concentration levels displayed	Vibration BUZZER, LED
STEL Alarm	Exceed STEL alarm value	icon & gas concentration levels displayed	Vibration BUZZER, LED
Bump Test	A bump test is now due to be performed	Bump Display "bump" blinking	Stops after Bump Test is completed successfully
Execute Calibration	A calibration is now due to be performed	icon & Gas Title Blinking	Stops after Calibration is completed successfully
Over Limit	Exceeding the overrange Limit for a sensor		BUZZER, LED Vibration
Under Limit	Sensor is reading a below Zero value		Stops after Zero Calibration

LOW Alarm / HIGH Alarm activation: In the event of a High Alarm the user must leave the area immediately. The audible, visual and vibration alarms stop when the device is in a safe area where the gas concentration is normal.

TWA Alarm activation: The alarm activates when the average gas levels for the last eight hours exceed the TWA concentration. The audible, visual and vibration alarms stop when the device is in a safe area where the gas concentration is normal.

1-877-367-7891

15 | Page

STEL Alarm activation: The alarm activates when the average gas levels for the last fifteen minutes exceed the STEL concentration. The audible, visual and vibration alarms stop when the device is in a safe area where the gas concentration is normal.

Over Limit: When the detector is exposed to gas concentrations above the upper limit range, it will display OL (Over Limit) alarm on the display.

Under Limit: When the detector indicates a below zero value, it will display UL(Under Limit) & Zero calibration warning on the display. The alarm will clear when a successful zero calibration is performed.

NOTE

- If a gas alarm occurs, evacuate to a safe place and take appropriate action.
- The factory setting for gas alarms is non-latching. Latching alarms can be set up by using the PM Link (optional) with a computer.

AimSafety PM Link Options:

Bump Test Interval: Notifies the user on a regular basis to check the device.

Calibration Interval: Notifies the user on a regular basis to calibrate the sensor.

Self-Test Interval: Notifies the user on a regular basis to Self-Test.

5.4. Battery Display

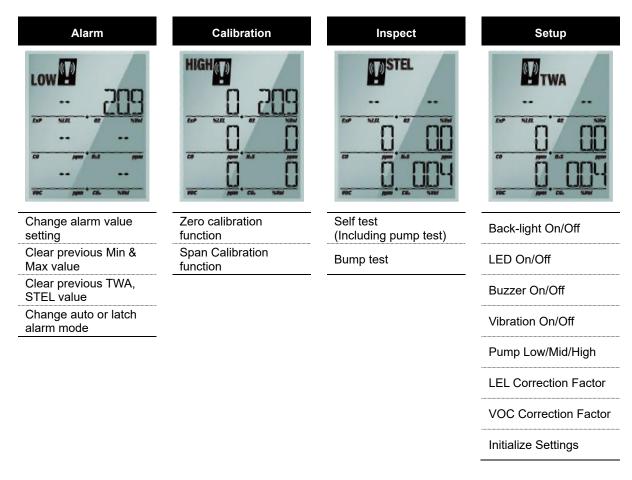
The battery status is indicated by three icons: High, Medium, Low.

Low: When the battery icon indicates "low", the detector will activate alarm every three minutes. When the low battery point is reached, the detector will continue to operate for about 30 minutes. End: When the battery icon indicates "end", the detector will display "SYS L-Bat" for two seconds and then it will turn off.

To charge the detector, plug in the charging adapter. During charging, the battery indicator will circulate.

WARNING

- Do not charge the battery in an explosive atmosphere.
- Only charge the battery in temperature ranges between 32°F to 104°F.
- Use only the charging adapter provided by AimSafety for charging the battery.
- Charging the battery after the device is fully turned off is recommended.



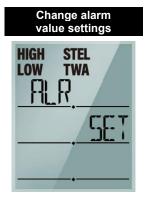
Settings and Operation

Press and hold $\triangle + \nabla$ buttons for two seconds simultaneously to enter the Settings menu. In the settings menu, the Alarm Menu, Calibration Menu, Inspection (Test) Menu, and Setup Menu will display. Users can configure a setting by scrolling to the required menu and pressing the Power/Enter button in a menu. In Settings Mode, the display will return to the measurement mode after 10 seconds of inactivity.

6.1. Alarm Menu

In the alarm menu, press the Power/Enter button and the device will enter the alarm setting mode. In the alarm setting mode (ALR SET), pressing the \triangle or ∇ button steps through the four menus. The user can enter and change or clear the previous MIN, MAX, TWA, and STEL alarms by pressing the Power/Enter button.

REV - 1.0


1-877-367-7891

[34-2900-0000-2]

- (1) ALR SET: Adjust the Low, High, STEL & TWA alarm levels
- (2) MIN MAX CLR: Deletes the previously measured MAX and MIN levels.
- (3) STEL TWA CLR: Deletes the previously measured STEL and TWA levels.
- (4) ModE SET: Sets the alarm mode to Latch or Auto
 - Latch Device stays in alarm when a gas alarm is triggered until a button is pressed to acknowledge it.
 - Auto Alarm stops when gas readings return to normal levels.

6.2. Calibration Menu

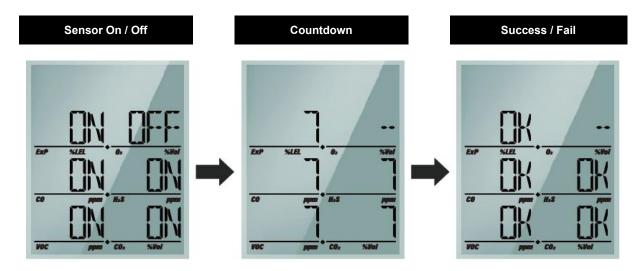
Calibration is the process of adjusting the sensor's response by using a specific concentration of calibration gas. Sensors will drift for a variety of reasons, so it is important to perform a full calibration periodically to ensure that the sensors response to the target gas are accurate. A full calibration consists of two points, a Fresh Air Calibration and a Span Calibration.

Fresh Air Calibration adjusts the zero offset of the toxic and LEL sensors or sets the oxygen sensor to 20.9% Vol.

Span Calibration adjusts the sensors' response to gas to account for sensor drift. It is recommended to perform a Fresh Air Calibration prior to a Span Calibration.

To activate a zero or span calibration, press the Power/Enter button.

- (1) Zero Run (Zero / Fresh Air Calibration)
- (2) SPAn Run (Span Calibration)


In the Span calibration mode, you must specify which sensor(s) will be calibrated.

NOTE

- If the sensitivity of each sensor has drifted below the standard accuracy, the calibration will fail.
- If the detector is dropped or damaged, if any of the sensors are replaced, or if the device fails a bump test, a calibration must be performed.

6.2.1. Zero Calibration (Fresh Air Calibration)

In the zero run mode, when pressing the Power/Enter button, ON/OFF will be displayed. By pressing \triangle or ∇ , move to all sensors that will be calibrated and select on or off. When you press the Power/Enter button for three seconds, the zero calibration will be performed for 10 seconds. To abort the calibration, press the Power/Enter button. If the calibration fails, "FA" will be displayed. If the calibration fails continuously, stop using the detector and contact the manufacturer or authorized agents for a replacement sensor or a warranty request.

6.2.2. Span Calibration

After selecting the applicable sensor(s) in the calibration mode, connect the tubing as shown below. Ensure that the demand flow regulator is firmly attached to the gas bottle and that the hose is securely attached to both the regulator and the quick disconnector of the PM500. Confirm that the cylinder matches with the calibration setting levels.

REV - 1.0[34-2900-0000-2] 19 | Page

IMPORTANT

For span calibrations, if an additional toxic or VOC (PID) sensor is included, perform the span calibration of those sensors after the other sensors are calibrated.

CAUTION

- Before calibration, confirm that the sensor warmup is completed. The device will display normal concentrations when the warmup is complete. If normal concentrations are not displayed, it may indicate that the warmup is not complete.
- The calibration must be performed in a clean air environment free of hazardous gases.

In the "SPAn RUN" span calibration mode, when you press the Power/Enter button, the On/Off will be displayed for each sensor. Press the \triangle or ∇ button to select a sensor to be calibrated and the Power/Enter button to select either On or Off, then press the Power/Enter button for three seconds to activate the calibration. The normal countdown will take between 90 and 180 seconds. Each sensor has different calibration time. To abort the calibration, press the Power/Enter button. If the calibration fails, the gas name of the sensor that failed will flash.

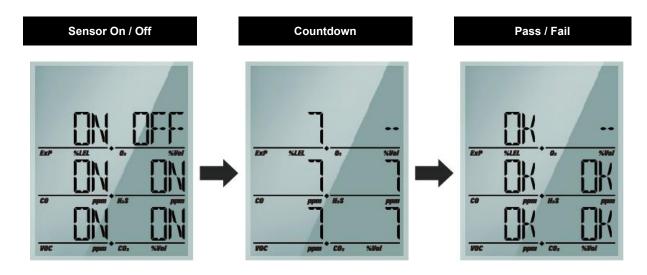
If the calibration fails continuously, stop using the detector and contact the manufacturer or authorized agents for a replacement sensor or a warranty request.

CAUTION

- All PM500 monitors are factory calibrated. Calibration values are saved in the unit. Do not use gas cylinders with concentrations that differ from those values as it will impair the accuracy and performance of the device. It is important to perform a full calibration periodically to ensure that the sensors response to the target gas are accurate.
- The device is calibrated on the assumption that the oxygen concentration is 20.9% VOL, combustible gas is 0% LEL, and toxic gas levels are 0 PPM in a clean air atmosphere. Fresh air calibration must be conducted in the same clean air without the presence of any other gases. Fresh air calibration in airtight spaces and hazardous environments is not recommended. Adequate ventilation is required for any exhaust gases.

Test (Inspection) Menu 6.3.

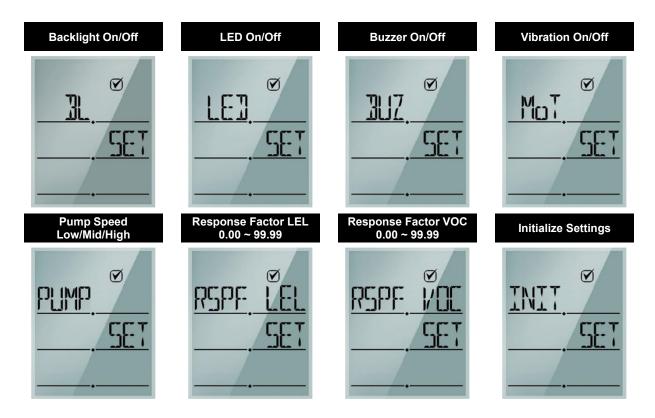
In the test menu, when pressing the Power/Enter button, the self-test and bump test mode will be displayed. In the SELF RUN mode, press the \triangle or ∇ to select the desired function and press the **20** | Page REV - 1.0[34-2900-0000-2]



Power/Enter button to activate the test. There are function tests for the LCD, buzzer, LED's, Backlight (Yellow), Backlight (Red), Motor and Memory.

In the BUMP RUN mode, press the Power/Enter button to enter the mode, and then select either on or off for each sensor. Attach the tube and apply the gas once the countdown starts. If the test passes, "OK" will be displayed. If the test fails, "FA" message will be displayed and the bump test message will flash in the measurement mode.

IMPORTANT


- Ensure that all sensors are warmed up before performing the bump test. It will take some time to warm up the sensors. You can distinguish the sensor warm up by looking at the sensor readings. If the detector is not warmed up, the last segment will be blinking.
 - * When you perform the bump test, make sure to use a gas concentration that is above the 1st alarm level.

[34-2900-0000-2]

6.4. Set Menu

In the "set menu", press the Power/Enter button to enter into the mode, and then select from the four menus below by pressing the \triangle or ∇ button. To enter the mode, press the Power/Enter button.

- BL SET: Blacklight Display Setting (ON / OFF)
- (2) LED SET: LED Setting (ON / OFF)
- 3 BUZ SET: Buzzer Setting (ON / OFF)
- (4) Mot SET: Pump Motor Setting (ON / OFF)
- (5) PUMP SET: Pump Speed Setting (Low/Mid/High)
- (6) RSPF LEL SET: Response Factor Setting for LEL Sensor (0.00 99.99)
- RSPF VOCs SET: Response Factor Setting for PID Sensor VOCs (0.00 99.99)

[34-2900-0000-2]

(8) INIT SET: Initialize Settings

REV - 1.0

22 | Page

Log

During a normal operation, data, event, calibration, and bump logs are stored in the device. The stored data can be downloaded via AimSafety PM Link with the PC program.

Up to 30 log events will be saved, and once the data is full, the oldest date will be overwritten automatically and the new data will be stored. (First in-First out). The detector will save a data log every one minute in clean air without hazardous gases. In the event of gas alarms or configuration changes, the data log will be saved every one second.

Туре	Condition Trigger
EVENT (High, Low, TWA, STEL) Alarm	Occurrence time, Duration, Alarm Type, Gas Concentration, Serial Number
BUMP TEST Log	Test date, Pass / Fail, Calibration Gas Concentration, Detected Concentration
Calibration Log	Date of the Calibration, Type, Calibration Gas Concentration, Detected Concentration
Data Log	Time, Date of executing PM Link, Concentration, Alarm Types, Options

REV - 1.0

23 | Page

Certification

√ FCC compliance

This device is tested according to FCC rules Part 15 and complies with restrictions for a Class A digital device. These restrictions are designed to provide adequate protection against an industrial environment which may cause harmful interference during operation. This device generates, uses, and can radiate radio frequency energy. If the instruction manual is not followed correctly,

.,	interference to wireless communications. Certifications	Standards
UL/CSA	LC24CA22331-1	CSA C22.2 No. 60079-0:2019 / UL 60079-0 – Edition 7
01, C3A	"Ex db ia IIC T4 Gb	CSA C22.2 No. 60079-1:16(R2021) / UL 60079-1 –
	Class I, Division 1, Groups A, B, C, and/or D, T4	Edition 7
	Class I, Zone 1, AEx db ia IIC T4 Gb"	CSA C22.2 No. 60079-11:14(R2023) / UL 60079-11 –
	"Ex db ia IIB T4 Gb	Edition 6
	Class I, Division 1, Groups C, and/or D, T4	UL 913 – Edition 8
	Class I, Zone 1, AEx db ia IIB T4 Gb"	CAN/CSA-C22.2 No. 61010-1-12 (R2022) / UL 61010-1
	PM500-IR (Infrared LEL)	- Edition 3
	PIVISOU-IN (IIIII aleu LEL)	- Luition 3
	"Ex ia IIC T4 Ga	
	Class I, Division 1, Groups A, B, C, and/or D, T4	
	Class I, Zone 0, AEx ia IIC T4 Ga"	
	"Ex ia IIB T4 Ga	
	Class I, Division 1, Groups C, and/or D, T4	
	Class I, Zone 0, AEx ia IIB T4 Ga"	
	PM500-IR-SO2 (Infrared LEL)	
	 PM500-IR-NH3 (Infrared LEL) 	
	PM500-IR-PID (Infrared LEL)	
	"Ex da ia IIC T4 Ga	
	Class I, Division 1, Groups A, B, C, and/or D, T4	
	Class I, Zone O, AEx da ia IIC T4 Ga"	
	"Ex da ia IIB T4 Ga	
	Class I, Division 1, Groups C, and/or D, T4	
	Class I, Zone O, AEx da ia IIB T4 G"	
	PM500-P (Catalytic Bead LEL)	
	PM500-P-NO2 (Catalytic Bead LEL)	
IECEx	IECEx CSA 23.0016X	IEC 60079-0: 2017 Ed. 7
	Ex db ia IIC T4 Gb or Ex db ia IIB T4 Gb	IEC 60079-1: 2014-06 Ed. 7
	PM500-IR (Infrared LEL)	IEC 60079-11: 2011 Ed. 6
	1 Wisoo IX (IIII area EEE)	1-0 000/0
	Ex ia IIC T4 Ga or Ex ia IIB T4 Ga	
	 PM500-IR-SO2 (Infrared LEL) 	
	 PM500-IR-NH3 (Infrared LEL) 	
	PM500-IR-PID (Infrared LEL)	
	Ex da ia IIC T4 Ga or Ex da ia IIB T4 Ga	
	PM500-P (Catalytic Bead LEL)	
	· · · · · · · · · · · · · · · · · · ·	
VC ₀	PM500-P-NO2 (Catalytic Bead LEL) VTI 33 KA3BO 0353X	IEC 60070 0: 2017 Ed. 7
KCs	KTL 23-KA2BO-0353X Ex ia IIC T4 Ga	IEC 60079-0: 2017 Ed. 7
		IEC 60079-1: 2014-06 Ed. 7
	PM500-IR-SO2 (Infrared LEL) PM500 IR NU3 (Infrared LEL)	IEC 60079-11: 2011 Ed. 6
	PM500-IR-NH3 (Infrared LEL) PM500-IR-NH3 (Infrared LEL)	
	PM500-IR-PID (Infrared LEL)	
	KTL 23-KA2BO-0355X	
	Ex da ia IIC T4 Ga	
	PM500-P (Catalytic Bead LEL)	
	PM500-P-NO2 (Catalytic Bead LEL)	

ATEX	CSANe 23ATEX1128X	EN IEC 60079-0:2018
	CC 0080	EN 60079-1:2014
	(€ 0080	EN 60079-11:2012
	€ II 1G	
	(Ex) II 2G	
	_	
	Ex db ia IIC T4 Gb	
	Ex db ia IIB T4 Gb	
	PM500-IR (Infrared LEL)	
	·	
	Ex ia IIC T4 Ga	
	Ex ia IIB T4 Ga	
	PM500-IR-SO2 (Infrared LEL)	
	PM500-IR-NH3 (Infrared LEL)	
	PM500-IR-PID (Infrared LEL)	
	Ex da ia IIC T4 Ga	
	Ex da ia IIB T4 Ga	
	PM500-P (Catalytic Bead LEL)	
	PM500-P-NO2 (Catalytic Bead LEL)	
INMETRO	BRA 23.GE0011X	ABNT NBR ISO IEC 60079-0:2020
	Ex d ia IIC T4 Gb or Ex d ia IIB T4 Gb	ABNT NBR IEC 60079-1:2016
	PM500-IR (Infrared LEL)	ABNT NBR IEC 60079-11:2013
	Ex ia IIC T4 Ga or Ex ia IIB T4 Ga	
	PM500-IR-SO2 (Infrared LEL)	
	PM500-IR-NH3 (Infrared LEL)	
	PM500-IR-PID (Infrared LEL)	
	- TWOOD IN TID (IIIII alea EEE)	
	Ex da ia IIC T4 Ga or Ex da ia IIB T4 Ga	
	PM500-P (Catalytic Bead LEL)	
	PM500-P-NO2 (Catalytic Bead LEL)	
EMC	Directive 2014/30/EU	

Error Codes

The following error codes may be displayed on the LCD if the detector is not working properly.

Code	Description	Solution
Err – 1	Pump Operation Error	Visually inspect the pump and filter. If dirty and/or damaged, replace with new pump inlet and/or filters and cycle power on the monitor.
Err – 2	Memory Error	Memory Access Error, Power OFF -> ON
Err – 3	Sensor Error	Sensor Operation Error, Power OFF -> ON
Err – 4	IR Sensor Error (LEL)	Sensor Operation Error, Power OFF -> ON
Err – 5	IR Sensor Error (LEL or CO2)	Sensor Operation Error, Power OFF -> ON
Err – 6	IRDA Communication Error	IRDA Communication Error, Power OFF -> ON
Err – 7	PID Power removed	PID Sensor Operation Error, Power OFF->ON, Contact Manufacturer
Err – 8	PID Oscillator overloaded	PID Sensor Operation Error, Power OFF->ON, Replace the PID Sensor
Err – 9	PID Oscillator not working	PID Sensor Operation Error, Power OFF->ON, Replace the PID Sensor
Err – 10	PID Lamp not illuminated	PID Sensor Operation Error, Power OFF->ON, Lamp Cleaning

If the error code persists, please contact AimSafety. If pump operation fails, it will activate an alarm every minute continuously until the detector is turned off.

10 Troubleshooting

Problem	Possible Cause	Troubleshooting
Device will not power on	Battery is fully discharged or not connected.	Charge sufficiently or replace battery.
"ERR" on display	Device is in error.	Restart device or change the sensor.
Gas is not being measured accurately	Sensor response has drifted or filter is clogged.	Perform a calibration, clean/replace filter(s) and/or replace the sensor(s).
Alarm is on but unrelated to gas levels	Monitor needs calibration or there is a device error.	Perform a calibration or replace sensor(s).
Calibration failed	Expired/incorrect span gas or faulty sensor	Confirm span gas cylinder, replace sensors if necessary and recalibrate.
Battery will not charge	Charger error, device error or bad battery.	Check charger connection or replace battery.
Continuous charging but device will not charge to 100%	Unit is being charged incorrectly.	Power down the monitor before charging.

REV - 1.0

26 | Page

11 Maintenance & Cleaning

11.1. Charging

A universal charging adapter is included with every PM500 monitor. Only AimSafety certified adapters should be used to charge the unit.

CAUTION

- Charge at room temperature (32°F to 104°F)
- Ensure the charging adapter is firmly connected to the PM500
- The backlight indicates charging is taking place by switching On/Off every 1 second
- Do not use any alternative adapter.
- Do not charge unit in a hazardous or explosive environment.

11.2. Gas Cylinders

Certified, NIST traceable gas provided by AimSafety is required to ensure the performance and accuracy of the PM500. Before using a gas cylinder for bump testing or calibration, be sure to confirm the expiration date. Do not use the cylinder if it is expired. Also confirm that the gas concentrations of the cylinder match the settings of the PM500 unit.

11.3. Demand Flow Regulator

A demand flow regulator is required for use with the PM500 as the pump that is integral to the monitor draws in the exact amount of gas that the instrument requires.

11.4. Battery

Only use the supplied charging adapter from AimSafety when charging the battery. Charging should be carried out in the temperature range of 32°F to 104°F.

11.5. Pump

When you change or reconnect any sampling tubing, a pump test should be performed. To perform a pump test, firmly block the end of the tube and confirm that the unit goes into alarm.

11.6. Filter

Ensure the dust and PTFE filters are free from debris, obstructions and discoloration. If a filter needs to be replaced, loosen the two screws and replace with a new filter. After replacing, reassemble the screws and continue use. The gas inlet is protected by both filters. If a filter is blocked and the pump is unable draw in a sample, the unit will not be able to accurately measure gas concentrations. Because of this, a warning alarm will trigger.

11.7. Standard Accessories

The standard accessories below are all included in the box.

12 Response Factors for Combustibles and VOCs

12.1. Catalytic Bead / Pellistor LEL Sensor

LEL (Lower Explosive Limit) sensors are designed to detect a wide variety of combustible gases and vapors. Different gases exhibit varying responses when detected by LEL sensors. For the most accurate readings, it is recommended that the instrument be calibrated with the target gas.

If calibrating with the target gas is not possible, refer to the provided LEL Response Factors. These factors will enable you to adjust the readings from your LEL sensor, ensuring accurate detection of various gases based on a calibration with a common standard gas. Please consult the LEL Response Factors table below to determine the appropriate Response Factor for the gas you are working with.

Please note that the default value for the Response Factor (RF) is 1.00, which is methane.

Gas / Chemical / Vapor	Chemical Formula	Methane (CH₄) RF
Methane	CH₄	1
Hydrogen	H ₂	1.06
Ethylene	C ₂ H ₄	0.96
Propane	C ₃ H ₈	0.82
Isobutane	C ₄ H ₁₀	0.74
n-Pentane	C ₅ H ₁₂	0.67
Hexane	C ₆ H ₁₄	0.5


12.2. Photoionization (PID) VOC Sensor

PID (Photoionization Detector) sensors are designed to detect a wide range of volatile organic compounds (VOCs) and other gases. Different gases exhibit varying responses when detected by PID sensors. For the most accurate readings, it is recommended that the instrument be calibrated with the target gas.

If calibrating with the target gas is not feasible, refer to the provided PID Response Factors. These factors will allow you to adjust the readings from your PID sensor, ensuring accurate detection of various gases based on a calibration with a common standard gas. Please consult the PID Response Factors table below to determine the appropriate Response Factor for the gas you are working with.

Please note that the default value for the Response Factor is 1.0 and is based on the industry standard isobutylene (C₄H₈).

REV - 1.029 | Page [34-2900-0000-2]

Gas / Chemical / Vapor	Formula	Response Factor
Acenaphthalene	C ₁₂ H ₈	0.7
Acenaphthene	C ₁₂ H ₁₀	0.7
Acetaldehyde	C ₂ H ₄ O	6
Acetamide	C ₂ H ₅ NO	2
Acetic acid	C ₂ H ₄ O ₂	28
Acetic anhydride	C ₄ H ₆ O ₃	4
Acetoin	C ₄ H ₈ O ₂	1.4
Acetone	C ₃ H ₆ O	1.17
Acetophenone	C ₈ H ₈ O	0.8
Acetyl bromide	C ₂ H ₃ BrO	8
Acrolein	C ₃ H ₄ O	3.2
Acrylic acid	C ₃ H ₄ O ₂	21
Alkanes, n-, C6+	CnH₂n+2	1.2
Allyl acetoacetate	C ₇ H ₁₀ O ₃	1.5
Allyl alcohol	C ₃ H ₆ O	2.3
Allyl bromide	C₃H₅Br	3
Allyl chloride	C₃H₅CI	3.3
Allyl glycidyl ether	C ₆ H ₁₀ O ₂	0.8
Allyl propyl disulfide	C ₆ H ₁₂ S ₂	0.4
Allylamine	C ₃ H ₇ N	0.8
Ammonia	NH ₃	8.5
Amyl acetate	C ₇ H ₁₄ O ₂	1.8
Amyl alcohol	C ₅ H ₁₂ O	2.6
Amyl alcohol, tert-	C ₅ H ₁₂ O	1.5
Amyl salicylate	C ₁₂ H ₁₆ O ₃	4
Anethole	C ₁₀ H ₁₂ O	0.4
Aniline	C ₆ H ₇ N	1
Anisole	C ₇ H ₈ O	0.59
Anisyl aldehyde	C ₈ H ₈ O ₂	0.4
Aromatic hydrocarbons, C8	H ₈ H ₁₀	0.55
Asphalt, petroleum fumes		1
Benzaldehyde	C ₇ H ₆ O	0.7
Benzene	C ₆ H ₆	0.5
Benzenethiol	C ₇ H ₇ S	0.8
Benzoic acid	C ₇ H ₆ O ₂	0.7
Benzonitrile	C ₇ H ₅ N	0.5
Benzoquinone, o-	C ₆ H ₄ O ₂	1

30 | Page REV - 1.0[34-2900-0000-2]

Gas / Chemical / Vapor	Formula	Response Factor
Benzoquinone, p-	C ₆ H ₄ O ₂	1
Benzoyl bromide	C ₇ H ₅ BrO	2
Benzyl 2-phenylacetate	C ₁₅ H ₁₄ O ₂	0.5
Benzyl acetate	C ₉ H ₁₀ O ₂	0.6
Benzyl alcohol	C ₇ H ₈ O	1
Benzyl chloride	C ₇ H ₇ Cl	0.7
Benzyl formate	C ₈ H ₈ O ₂	0.8
Benzyl isobutyrate	C ₁₁ H ₁₄ O ₂	0.5
Benzyl nitrile	C ₈ H ₇ N	1.4
Benzyl propionate	C ₁₀ H ₁₂ O ₂	0.8
Benzylamine	C ₇ H ₉ N	0.6
Biphenyl	C ₁₂ H ₁₀	0.4
Borneol	C ₁₀ H ₁₈ O	0.8
Bromine	Br ₂	15
Bromo-2,2-dimethylpropane, 1-	C₅H₁₁Br	2
Bromo-2-chloroethane, 1-	C ₂ H ₄ BrCl	3
Bromo-2-methylpentane, 1-	C ₆ H ₁₃ Br	2
Bromoacetone	C ₃ H ₅ BrO	1
Bromoacetylene	C ₂ HBr	4
Bromobenzene	C ₆ H₅Br	0.32
Bromobutane, 1-	C₄H ₉ Br	1.6
Bromobutane, 2-	C ₄ H ₉ Br	0.97
Bromocyclohexane	C ₆ H ₁₁ Br	2
Bromoethane	C₂H₅Br	1.6
Bromoethanol, 2-	C₂H₅BrO	2
Bromoethyl methyl ether, 2-	C ₃ H ₇ OBr	2.5
Bromoform	CHBr₃	2.7
Bromopentane, 1-	C₅H₁₁Br	1.1
Bromopropane, 1-	C₃H ₇ Br	1.5
Bromopyridine, 3-	C ₅ H ₄ BrN	2
Bromopyridine, 4-	C₅H₄BrN	2
Bromotrimethylsilane	C ₃ H ₉ BrSi	1.9
But-2-ynal	C ₄ H ₄ O	3
But-3-ynal	C ₄ H ₄ O	1.5
Butadiene diepoxide, 1,3-	C ₄ H ₆ O ₂	4
Butadiene, 1,2-	C₄H ₆	1
Butadiene, 1,3-	C ₄ H ₆	0.8

REV - 1.0 [34-2900-0000-2] **31 |** Page

Gas / Chemical / Vapor	Formula	Response Factor
Butane, n-	C ₄ H ₁₀	40
Butanediol, 2,3-	C ₄ H ₁₀ O ₂	5
Butanedione, 2,3-	C ₄ H ₆ O ₂	0.86
Butanoic acid	C ₄ H ₈ O ₂	4.3
Butanol, 1-	C ₄ H ₁₀ O	3.9
Butanol, 2-	C ₄ H ₁₀ O	3
Butanone oxime, 2-	C ₄ H ₉ NO	1
Buten-3-ol, 1-	C ₄ H ₈ O	1.8
Butene nitrile, 3-	C ₄ H ₅ N	3
Butene, 1-	C ₄ H ₈	1.5
Butene, 2-	C ₄ H ₈	1.3
Butene, cis-2-	C ₄ H ₈	1.3
Butene, trans-2-	C ₄ H ₈	1.3
Butenoic acid, 3-	C ₄ H ₆ O ₂	2
Butoxyethanol, 2-	C ₆ H ₁₄ O ₂	1.3
Butoxyethoxyethanol	C ₈ H ₁₈ O ₃	3
Butoxyethyl acetate, 2-	C ₈ H ₁₆ O ₃	2
Butyl acetate	C ₆ H ₁₂ O ₂	2.5
Butyl acetate, sec-	C ₆ H ₁₂ O ₂	1.8
Butyl acrylate	C ₇ H ₁₂ O ₂	1.3
Butyl butyrate	C ₈ H ₁₆ O ₂	1.53
Butyl chloroformate	C ₅ H ₉ ClO ₂	3.2
Butyl cyclohexan-1-ol, 4-tert-	C ₁₀ H ₂₀ O	1.4
Butyl cyclohexyl acetate, 2-tert-	C ₁₂ H ₂₂ O ₂	0.9
Butyl ether, n-	C ₈ H ₁₈ O	0.82
Butyl glycidyl ether	C ₇ H ₁₄ O ₂	2
Butyl iodide	C ₄ H ₉ I	0.27
Butyl isocyanate	C ₅ H ₉ NO	2.5
Butyl lactate	C ₇ H ₁₄ O ₃	2.5
Butyl mercaptan, n-	C ₄ H ₁₀ S	0.8
Butyl mercaptan, tert-	C ₄ H ₁₀ S	0.62
Butyl methacrylate	C ₈ H ₁₄ O ₂	1.2
Butyl propionate, n-	C ₇ H ₁₄ O ₂	1.9
Butylamine, n-	C ₄ H ₁₁ N	1
Butylamine, sec-	C ₄ H ₁₁ N	0.9
Butylamine, tert-	C ₄ H ₁₁ N	1.2
Butylbenzene	C ₁₀ H ₁₄	0.6

32 | Page REV - 1.0 [34-2900-0000-2]

Gas / Chemical / Vapor	Formula	Response Factor
Butylbenzene, sec-	C ₁₀ H ₁₄	0.4
Butylbenzene, tert-	C ₁₀ H ₁₄	0.4
Butyldiglycol acetate	C ₁₀ H ₂₀ O ₄	1.6
Butylene carbonate, 1,2-	C ₅ H ₈ O ₃	18
Butylphenol, o-sec-	C ₁₀ H ₁₄ O	0.9
Butyn-1-ol, 2-	C ₄ H ₆ O	0.6
Butyn-2-one	C ₄ H ₄ O	3
Butyraldehyde	C ₄ H ₈ O	1.7
Butyrolactone, gamma-	C ₄ H ₆ O ₂	15
Butyryl chloride	C ₄ H ₇ CIO	3
Camphene	C ₁₀ H ₁₆	0.35
Camphor	C ₁₀ H ₁₆ O	0.4
Carbitol acetate	C ₆ H ₁₆ O ₄	1.6
Carbon disulfide	CS ₂	1.4
Carbon suboxide	C ₃ O ₂	10
Carbon tetrabromide	CBr ₄	11
Carene	C ₁₀ H ₁₆	0.4
Carvacrol	C ₁₀ H ₁₄ O	0.8
Carvone, R-	C ₁₀ H ₁₄ O	1.6
Caryophyllene	C ₁₅ H ₂₄	0.4
Chloramine	CIH ₂ N	2
Chloro-1,1-difluoroethene, 2-	C ₂ HCIF ₂	1.5
Chloro-2-propanone, 1-	C₃H₅CIO	1
Chloroacetaldehyde	C ₂ H ₃ CIO	3
Chloroacetyl chloride	C ₂ H ₂ Cl ₂ O	8
Chlorobenzene	C ₆ H₅Cl	0.45
Chlorobutane, 1-	C ₄ H ₉ Cl	10
Chlorobutane, 2-	C ₄ H ₉ CI	5.8
Chlorocyclohexane	C ₆ H ₁₁ CI	2
Chloroethanol, 2-	C ₂ H ₅ CIO	10
Chloroethyl methyl ether, 2-	C ₃ H ₇ CIO	2.6
Chloromethoxyethane	C ₃ H ₇ CIO	4
Chloroprene	C ₄ H ₅ Cl	1.3
Chloropyridine, 2-	C ₅ H ₄ CIN	1
Chlorostyrene, o-	C ₈ H ₇ Cl	0.4
Chlorothiophene, 3-	C ₄ H ₃ CIS	0.7
Chlorotoluene, m-	C ₇ H ₇ Cl	0.5

REV - 1.0 [34-2900-0000-2] 33 | Page

Gas / Chemical / Vapor	Formula	Response Factor
Chlorotoluene, o-	C ₇ H ₇ Cl	0.5
Chlorotoluene, p-	C ₇ H ₇ Cl	0.4
Chlorotrifluoroethylene	C ₂ CIF ₃	1
Cinnamic aldehyde	C ₈ H ₈ O	0.4
Cinnamyl acetate	C ₁₁ H ₁₂ O ₂	0.4
Cinnamyl alcohol	C ₉ H ₁₀ O	0.4
Citral	C ₁₀ H ₁₆ O	1.7
Citronellal	C ₁₀ H ₁₈ O	0.9
Citronellol	C ₁₀ H ₂₀ O	1
Citronellol acetate	C ₁₂ H ₂₂ O ₂	1.5
Citronellol formate	C ₁₁ H ₂₀ O ₂	1.5
Citronellyl isobutyrate	C ₁₄ H ₂₆ O ₂	0.9
Clary propyl acetate	C ₁₁ H ₂₀ O ₃	1.2
Coumarin	C ₉ H ₆ O ₂	0.4
Creosote		1
Cresol, m-	C ₇ H ₈ O	1.4
Cresol, o-	C ₇ H ₈ O	1.4
Cresol, p-	C ₇ H ₈ O	1.5
Cresyl acetate, p-	C ₉ H ₁₀ O ₂	1
Cresyl ethyl ether, p-	C ₉ H ₁₂ O	0.8
Cresyl methyl ether	C ₈ H ₁₀ O	0.8
Crotonaldehyde	C ₄ H ₆ O	1
Crotonyl alcohol	C ₄ H ₈ O	0.8
Cycloalkanes		1.5
Cyclobutanone	C ₄ H ₆ O	1.12
Cyclobutene	C ₄ H ₆	3
Cycloheptane	C ₇ H ₁₄	1.1
Cyclohex-2-enedione, 1,4-	C ₆ H ₆ O ₂	1
Cyclohexane	C ₆ H ₁₂	1.3
Cyclohexanethiol	C ₆ H ₁₂ S	0.5
Cyclohexanol	C ₆ H ₁₂ O	1.6
Cyclohexanone	C ₆ H ₁₀ O	1
Cyclohexene	C ₆ H ₁₀	0.9
Cyclohexyl acetate	C ₈ H ₁₄ O ₂	1.2
Cyclohexylamine	C ₆ H ₁₃ N	3
Cyclooctadiene	C ₈ H ₁₂	1
Cyclopentadiene	C₅H ₆	0.8

34 | Page REV - 1.0 [34-2900-0000-2]

Gas / Chemical / Vapor	Formula	Response Factor
Cyclopentane	C ₅ H ₁₀	10
Cyclopentanone	C ₅ H ₈ O	0.9
Cyclopentene	C ₅ H ₈	1.5
Cyclopentene-1,3-dione, 4-	C ₅ H ₄ O ₂	1
Cyclopropylamine	C ₃ H ₇ N	1.5
Cymene, p-	C ₁₀ H ₁₄	0.4
Decahydronaphthalene	C ₁₀ H ₁₈	0.9
Decanal	C ₁₀ H ₂₀ O	1.2
Decane	C ₁₀ H ₂₂	1.2
Decenal, trans-4-	C ₁₀ H ₁₈ O	1.4
Decene	C ₁₀ H ₂₂	0.8
Decyne, 1-	C ₁₀ H ₁₈	0.43
Diacetone alcohol	C ₆ H ₁₂ O ₂	0.9
Diazine, 1,2-	C ₄ H ₄ N ₂	3
Diazine, 1,3-	C ₄ H ₄ N ₂	3
Dibromoacetylene	C ₂ Br ₂	2
Dibromochloromethane	CHBr₂CI	10
Dibromocyclohexane, 1,2-	$C_6H_{10}Br_2$	3
Dibromocyclopentane	C ₅ H ₈ Br ₂	3
Dibromodichloromethane	CBr ₂ Cl ₂	4
Dibromodifluoromethane	CF ₂ Br ₂	3
Dibromoethane, 1,2-	C ₂ H ₄ Br ₂	2
Dibromoethene, 1,1-	$C_2H_2Br_2$	1.5
Dibromoethene, 1,2-	$C_2H_2Br_2$	1.5
Dibromomethane	CH ₂ Br ₂	1.9
Dichloro-1,2-difluoroethene, 1,2-	$C_2Cl_2F_2$	2
Dichloro-1,3-butadiene, 1,4-	C ₄ H ₆ Cl ₂	0.6
Dichloro-1-propene, 2,3-	C ₃ H ₄ Cl ₂	1.4
Dichloro-2,2,-difluoroethene, 1,1-	C ₂ Cl ₂ F ₂	1
Dichloro-2-butene, 1,4-	C ₄ H ₇ Cl	2
Dichloro-2-butene, trans-1,4-	C ₄ H ₇ Cl	2
Dichloroacetylene	C ₂ Cl ₂	5
Dichlorobenzene, m-	C ₆ H ₄ Cl ₂	0.5
Dichlorobenzene, o-	C ₆ H ₄ Cl ₂	0.6
Dichlorobenzene, p-	C ₆ H ₄ Cl ₂	0.5
Dichloroethene, 1,1-	C ₂ H ₂ Cl ₂	1
Dichloroethene, 1,2-	C ₂ H ₂ Cl ₂	0.4

REV - 1.0 [34-2900-0000-2] **35** | Page

Dichloroethene, cis-1,2-	Gas / Chemical / Vapor	Formula	Response Factor
Dichloroethene, trans-1,2-	Dichloroethene, cis-1,2-	$C_2H_2CI_2$	0.8
Dichloromethylamine			0.4
Dicyclohexylamine C₁2H₂3N 0.9		CH ₂ Cl ₂	70
Dicyclopentadiene	Dichloromethylamine	CH ₃ Cl ₂ N	2
Diesel fuel Diethoxyethane, 1,1- C ₆ H ₁₄ O ₂ 1.5	Dicyclohexylamine	C ₁₂ H ₂₃ N	0.9
Diethoxyethane, 1,1-	Dicyclopentadiene	C ₁₀ H ₁₂	0.65
Diethoxymethane	Diesel fuel		0.8
Diethyl carbonate	Diethoxyethane, 1,1-	C ₆ H ₁₄ O ₂	1.5
Diethyl ether	Diethoxymethane	C ₅ H ₁₂ O ₂	1
Diethyl maleate	Diethyl carbonate	C ₅ H ₁₀ O ₃	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl ether	C ₄ H ₁₀ O	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl maleate	C ₈ H ₁₂ O ₄	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl malonate	C ₇ H ₁₂ O ₄	4
Diethyl sulfate C₄H₁₀SO₄ 20 Diethyl sulfide C₄H₁₀S 0.8 Diethyl sulfone C₄H₁₀O₂S 2 Diethylamine C₆H₁₀ 2 Diethylamine C₆H₁₅ON 2.7 Diethylaminopropylamine, 3- C₆H₁₅ON 2.7 Diethylaminopropylamine, 3- CȝH₁₀N₂ 5 Diethylchlorophosphite C₄H₁₀ClO₂P 1 Diethylene glycol C₄H₁₀O₃ 15 Diethylene glycol monoethyl ether C₆H₁₄O₃ 1.5 Diethylenetriamine C₄H₁₃N₃ 1 Diethylhydroxylamine C₄H₁₁NO 1.5 Diethylsilane C₄H₁₂Si 2 Diglycidyl ether C₆H₁₀O₃ 3 Dihydroeugenol C₁₀H₁₄O₂ 0.4 Dihydrojasmone C₁₁H₁₀O 0.6 Dihydromyrcenol C₁₀H₂₀O 0.8 Dihydroxybenzene, 1,2- C₆H₆O₂ 1 Diiodomethane CH₂l₂ 1.2 Diisobutyl ketone C₃H₃₀O 0.8	Diethyl phosphite	C ₄ H ₁₁ O ₃ P	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl phthalate	C ₁₂ H ₁₄ O ₄	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl sulfate	C ₄ H ₁₀ SO ₄	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl sulfide	C ₄ H ₁₀ S	0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethyl sulfone	C ₄ H ₁₀ O ₂ S	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylacetylene	C ₆ H ₁₀	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylamine	C ₄ H ₁₁ N	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylaminoethanol, 2-	C ₆ H ₁₅ ON	2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylaminopropylamine, 3-	C ₇ H ₁₈ N ₂	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylchlorophosphite	C ₄ H ₁₀ ClO ₂ P	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylene glycol	C ₄ H ₁₀ O ₃	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylene glycol monoethyl ether	C ₆ H ₁₄ O ₃	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylenetriamine	C ₄ H ₁₃ N ₃	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diethylhydroxylamine	C ₄ H ₁₁ NO	1.5
$\begin{array}{c ccccc} \textbf{Dihydroeugenol} & C_{10}H_{14}O_2 & 0.4 \\ \hline \textbf{Dihydrojasmone} & C_{11}H_{18}O & 0.6 \\ \hline \textbf{Dihydromyrcenol} & C_{10}H_{20}O & 0.8 \\ \hline \textbf{Dihydroxybenzene, 1,2-} & C_6H_6O_2 & 1 \\ \hline \textbf{Dihydroxybenzene, 1,3-} & C_6H_6O_2 & 1 \\ \hline \textbf{Diiodomethane} & CH_2I_2 & 1.2 \\ \hline \textbf{Diisobutyl ketone} & C_9H_{18}O & 0.8 \\ \hline \end{array}$	Diethylsilane	C ₄ H ₁₂ Si	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Diglycidyl ether	C ₆ H ₁₀ O ₃	3
$\begin{array}{c cccc} \textbf{Dihydromyrcenol} & \textbf{C}_{10}\textbf{H}_{20}\textbf{O} & \textbf{0.8} \\ \hline \textbf{Dihydroxybenzene, 1,2-} & \textbf{C}_{6}\textbf{H}_{6}\textbf{O}_{2} & \textbf{1} \\ \hline \textbf{Dihydroxybenzene, 1,3-} & \textbf{C}_{6}\textbf{H}_{6}\textbf{O}_{2} & \textbf{1} \\ \hline \textbf{Diiodomethane} & \textbf{C}\textbf{H}_{2}\textbf{I}_{2} & \textbf{1.2} \\ \hline \textbf{Diisobutyl ketone} & \textbf{C}_{9}\textbf{H}_{18}\textbf{O} & \textbf{0.8} \\ \hline \end{array}$	Dihydroeugenol	C ₁₀ H ₁₄ O ₂	0.4
$\begin{array}{c cccc} \textbf{Dihydroxybenzene, 1,2-} & C_6H_6O_2 & 1 \\ \hline \textbf{Dihydroxybenzene, 1,3-} & C_6H_6O_2 & 1 \\ \hline \textbf{Diiodomethane} & CH_2I_2 & 1.2 \\ \hline \textbf{Diisobutyl ketone} & C_9H_{18}O & 0.8 \\ \hline \end{array}$	Dihydrojasmone	C ₁₁ H ₁₈ O	0.6
$ \begin{array}{c cccc} \textbf{Dihydroxybenzene, 1,3-} & C_6H_6O_2 & 1 \\ \hline \textbf{Diiodomethane} & CH_2I_2 & 1.2 \\ \hline \textbf{Diisobutyl ketone} & C_9H_{18}O & 0.8 \\ \hline \end{array} $	Dihydromyrcenol	C ₁₀ H ₂₀ O	0.8
	Dihydroxybenzene, 1,2-	C ₆ H ₆ O ₂	1
Diisobutyl ketone C ₉ H ₁₈ O 0.8	Dihydroxybenzene, 1,3-	C ₆ H ₆ O ₂	1
	Diiodomethane	CH ₂ I ₂	1.2
Diisobutylene C ₈ H ₁₆ 0.7	Diisobutyl ketone	C ₉ H ₁₈ O	0.8
	Diisobutylene	C ₈ H ₁₆	0.7

36 | Page REV - 1.0 [34-2900-0000-2]

Gas / Chemical / Vapor	Formula	Response Factor
Diisopropyl ether	C ₆ H ₁₄ O	0.7
Diisopropylamine	C ₆ H ₁₅ N	0.7
Diisopropylbenzene	C ₁₂ H ₁₈	0.5
Diketene	C ₄ H ₄ O ₂	2.2
Dimethoxybenzene, 1,4-	C ₈ H ₁₀ O ₂	1.3
Dimethoxyethane, 1,2-	C ₄ H ₁₀ O ₂	0.9
Dimethoxymethane	C ₃ H ₈ O ₂	2.8
Dimethyl carbonate	C ₃ H ₆ O ₃	60
Dimethyl chlorothiophosphate	C ₂ H ₆ CIO ₂ PS	1
Dimethyl disulfide	C ₂ H ₆ S ₂	0.2
Dimethyl ether	C ₂ H ₆ O	1.3
Dimethyl hydrogen phosphite	C ₂ H ₇ O ₃ P	8
Dimethyl phthalate	C ₁₀ H ₁₀ O ₄	1
Dimethyl sulfoxide	C ₂ H ₆ OS	20
Dimethylacetamide N,N-	C ₄ H ₉ NO	1.3
Dimethylacetylene	C ₄ H ₆	0.19
Dimethylamine	C ₂ H ₇ N	1.5
Dimethylaminoethane, N,N-	C ₂ H ₈ N ₂	1
Dimethylaminoethanol, 2-	C ₄ H ₁₁ NO	3
Dimethylaniline, NN-	C ₈ H ₁₁ N	2
Dimethylboron bromide	C₂H ₆ BBr	4
Dimethylbutene, 2,3-	C ₆ H ₁₂	0.8
Dimethylbutyl acetate, 1,3-	C ₈ H ₁₆ O ₂	1.6
Dimethylcycloheptane, 1,2-	C ₉ H ₁₈	1.3
Dimethylcyclohexane,1,2-	C ₈ H ₁₆	0.55
Dimethylcyclopentane	C ₇ H ₁₄	1.2
Dimethylethylamine, NN-	C ₄ H ₁₁ N	1.6
Dimethylformamide	C ₃ H ₇ NO	1.3
Dimethylmethylphosphonate	C ₃ H ₉ O ₃ P	5
Dimethyloctan-1-ol, 3,7-	C ₁₀ H ₂₂ O	1.2
Dimethyloctan-3-ol, 3,7-	C ₁₀ H ₂₂ O	1.2
Dimethylpentane, 2,4-	C ₇ H ₁₆	1
Dimethylsilane	C ₂ H ₈ Si	2
Di-n-butylamine	C ₈ H ₁₉ N	6
Dioxane, 1,4-	C ₄ H ₈ O ₂	1.45
Dioxolane	C ₃ H ₆ O ₂	2.7
Dipentene	C ₁₀ H ₁₆	0.9

Gas / Chemical / Vapor	Formula	Response Factor
Dipentene, (+)-	C ₁₀ H ₁₆	0.8
Diphenyl ether	C ₁₂ H ₁₀ O	1.5
Dipropyl ether	C ₆ H ₁₄ O	1
Dipropylamine	C ₆ H ₁₅ N	1.5
Dipropylene glycol	C ₆ H ₁₄ O ₃	4
Disilane	Si ₂ H ₆	2
Disulfur dibromide	S ₂ Br ₂	1.5
Disulfur dichloride	S ₂ Cl ₂	3
Di-tert-butyl-p-cresol	C ₁₅ H ₂₄ O	0.3
Divinylbenzene, 1,2-	C ₁₀ H ₁₀	0.7
Divinylbenzene, 1,3-	C ₁₀ H ₁₀	0.6
Dodecene	C ₁₂ H ₂₄	1
Epichlorohydrin	C ₃ H ₅ ClO	5
Epoxypropyl isopropyl ether, 2,3-	C ₆ H ₁₂ O ₂	1.2
Estragole	C ₁₀ H ₁₂ O	0.7
Ethanol	C ₂ H ₆ O	11
Ethanolamine	C ₂ H ₇ NO	3
Ethoxy-2-methylpropane, 1-	C ₆ H ₁₄ O	1
Ethoxy-2-propanol, 1-	C ₅ H ₁₂ O ₂	1.2
Ethoxybutane, 2-	C ₆ H ₁₄ O	1
Ethoxyethanol, 2-	C ₄ H ₁₀ O ₂	2
Ethoxypropanol	C ₅ H ₁₂ O ₂	1.2
Ethyl 2,2,2-trifluoroethyl ether	C ₄ H ₇ F ₃ O	5
Ethyl 2-methylbutyrate	C ₇ H ₁₄ O ₂	1.4
Ethyl acetate	C ₄ H ₈ O ₂	4.5
Ethyl acetoacetate	C ₆ H ₁₀ O ₃	2.5
Ethyl acrylate	C ₅ H ₈ O ₂	2.3
Ethyl benzoate	C ₉ H ₁₀ O ₂	0.9
Ethyl butyrate	C ₆ H ₁₂ O ₂	1.4
Ethyl chloroformate	C ₃ H ₅ O ₂ Cl	80
Ethyl cyanoacrylate	C ₆ H ₇ O ₂ N	1.5
Ethyl decanoate	C ₁₂ H ₂₄ O ₂	1.4
Ethyl formate	C ₃ H ₆ O ₂	35
Ethyl hexanoate	C ₈ H ₁₆ O ₂	1.6
Ethyl hexanol, 2-	C ₈ H ₁₈ O	1.5
Ethyl iodide	C ₂ H ₅ I	0.3
Ethyl isopropyl ketone	C ₆ H ₁₂ O	0.8

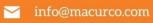
Gas / Chemical / Vapor	Formula	Response Factor
Ethyl lactate	C ₅ H ₁₀ O ₃	2.1
Ethyl mercaptan	C ₂ H ₆ S	0.6
Ethyl methacrylate	C ₆ H ₁₀ O ₂	1.06
Ethyl methyl carbonate	C ₄ H ₈ O ₃	18
Ethyl octanoate	C ₁₀ H ₂₀ O ₂	2
Ethyl phenylacetate	C ₁₀ H ₁₂ O ₂	1.2
Ethyl propanoate	C ₅ H ₁₀ O ₂	2.5
Ethyl tert-butyl ether	C ₆ H ₁₄ O	0.8
Ethyl-2-methylbenzene, 1-	C ₉ H ₁₂	0.5
Ethyl-3-ethoxypropionate	C ₇ H ₁₄ O ₃	3
Ethylacetylene	C ₄ H ₆	0.2
Ethylamine	C ₂ H ₇ N	1
Ethylbenzene	C ₈ H ₁₀	0.56
Ethylcyclohexane	C ₈ H ₁₆	0.8
Ethylene	C ₂ H ₄	50
Ethylene glycol	C ₂ H ₆ O ₂	9
Ethylene glycol diacetate	C ₆ H ₁₀ O ₄	4
Ethylene glycol monopropyl ether	C ₅ H ₁₂ O ₂	3
Ethylene oxide	C ₂ H ₄ O	9
Ethylenediamine	C ₂ H ₈ N ₂	10
Ethyleneimine	C ₂ H ₅ N	2
Ethylhexanal, 2-	C ₈ H ₁₆ O	1.5
Ethylhexanoic acid, 2-	C ₈ H ₁₆ O ₂	5
Ethylhexenal, 2-	C ₈ H ₁₄ O	1.3
Ethylhexyl acrylate, 2-	C ₁₁ H ₂₀ O ₂	1
Ethylmorpholine, 4-	C ₆ H ₁₃ NO	3
Ethyltoluene, 3-	C ₉ H ₁₂	0.6
Ethyltoluene, 4-	C ₉ H ₁₂	0.6
Eucalyptol	C ₁₀ H ₁₈ O	0.6
Eugenol	C ₁₀ H ₁₂ O ₂	10
Eugenol methyl ether	C ₁₁ H ₁₄ O ₂	0.4
Fenchol	C ₁₀ H ₁₈ O	0.4
Ferrocene	C ₁₀ H ₁₀ Fe	0.8
Fluorobenzene	C ₆ H ₅ F	0.74
Fluorobenzoic acid, 4-	C ₇ H ₅ FO ₂	2
Formamide	CH₃ON	2
Furan	C ₄ H ₄ O	0.4

Gas / Chemical / Vapor	Formula	Response Factor
Furfural	$C_5H_4O_2$	1.1
Furfuryl alcohol	C ₅ H ₆ O ₂	2
Furfuryl mercaptan	C₅H ₆ OS	0.8
Gasoline		0.9
Geranial	C ₁₀ H ₁₆ O	0.6
Geraniol	C ₁₀ H ₁₈ O	0.7
Geranyl acetate	C ₁₂ H ₂₀ O ₂	1.2
Germane	GeH₄	10
Glutaraldehyde	C ₅ H ₈ O ₂	5
Glycidyl methacrylate	C ₇ H ₁₀ O ₃	1.2
Glycolaldehyde	C ₂ H ₄ O ₂	5
Guaiacol	C ₇ H ₈ O ₂	0.8
Heptan-2-one	C ₇ H ₁₄ O	0.85
Heptan-3-one	C ₇ H ₁₄ O	0.73
Heptan-4-one	C ₇ H ₁₄ O	0.9
Heptane	C ₇ H ₁₆	2.2
Heptanol	C ₇ H ₁₆ O	1.7
Heptene, 1-	C ₇ H ₁₄	0.88
Heptylcyclopentan-1-one, 2-	C ₁₂ H ₂₂ O	0.8
Heptyne, 1-	C ₇ H ₁₂	2
Hex-1-en-3-ol	C ₆ H ₁₂ O	0.9
Hexachlorodisilane	Cl ₆ Si ₂	8
Hexamethyl cyclotrisiloxane	$C_6H_{18}O_3Si_3$	0.3
Hexamethyldisilazane, 1,1,1,3,3,3	C ₆ H ₁₈ NSi ₂	0.45
Hexamethyldisiloxane	C ₆ H ₁₈ OSi ₂	0.31
Hexamethylene diisocyanate	C ₈ H ₁₂ N ₂ O ₂	1.5
Hexamethyleneimine	C ₆ H ₁₃ N	1.1
Hexan-2-one	C ₆ H ₁₂ O	0.8
Hexane	C ₆ H ₁₄	3
Hexanoic acid	C ₆ H ₁₂ O ₂	4
Hexanol	C ₆ H ₁₄ O	2
Hexenal, cis-3-	C ₆ H ₁₀ O	1
Hexene, 1-	C ₆ H ₁₂	0.98
Hexenyl acetate, cis-3-	C ₈ H ₁₄ O ₂	1
Hexenyl butyrate, cis-3-	C ₁₀ H ₁₈ O ₂	1.5
Hexylaldehyde	C ₆ H ₁₂ O	1.2
Hydrazine	H ₄ N ₂	3

Gas / Chemical / Vapor	Formula	Response Factor
Hydrogen iodide	HI	5
Hydrogen selenide	H₂Se	2
Hydrogen sulfide	H ₂ S	4
Hydrogen telluride	H₂Te	2
Hydroxybutanal, 3-	C ₄ H ₈ O ₂	2
Hydroxycitronellal	C ₁₀ H ₂₀ O ₂	1
Hydroxyethyl acrylate	C ₅ H ₈ O ₃	1.2
Hydroxylamine	H₃NO	2
Hydroxypropyl acrylate, 2-	C ₆ H ₁₀ O ₃	1.5
Indene	C ₉ H ₈	0.6
Indole	C ₈ H ₇ N	0.4
lodine	l ₂	0.18
lodobenzene	C ₆ H ₅ I	0.2
lodoethene	C ₂ H ₃ I	1.2
lodoform	CHI ₃	1.5
lodomethane	CH ₃ I	0.4
Isoalkanes, C10-C13	C ₈ H ₁₈ O	1
Isoamyl acetate	C ₇ H ₁₄ O ₂	1.5
Isoamyl salicilate	C ₁₂ H ₁₆ O ₃	1
Isoamylene, beta-	C ₅ H ₁₀	0.82
Isobornyl acetate	C ₁₂ H ₂₀ O ₂	0.5
Isobutane	C ₄ H ₁₀	8
Isobutanol	C ₄ H ₁₀ O	3
Isobutyl acetate	C ₆ H ₁₂ O ₂	2
Isobutyl acrylate	C ₇ H ₁₂ O ₂	1.2
Isobutyl chloroformate	C ₅ H ₉ CIO ₂	10
Isobutylamine	C ₄ H ₁₁ N	1
Isobutylbenzene	C ₁₀ H ₁₄	0.4
Isobutylene	C ₄ H ₈	1
Isobutylene epoxide	C ₄ H ₈ O	3
Isobutyraldehyde	C ₄ H ₈ O	1.38
Isobutyric acid	C ₄ H ₈ O ₂	4.4
Isodecanol	C ₁₀ H ₂₂ O	0.9
Isodihydrolavandulal	C ₁₀ H ₁₈ O	0.7
Isoeugenol	C ₁₀ H ₁₂ O ₂	0.4
Isoheptane	C ₇ H ₁₆	1.2
Isojasmone	C ₁₁ H ₁₈ O	0.7

REV - 1.0 [34-2900-0000-2] **41 |** Page

Gas / Chemical / Vapor	Formula	Response Factor
Isomenthone	C ₁₀ H ₁₈ O	0.6
Isononanal	C ₉ H ₁₈ O	0.9
Isononanol	C ₉ H ₂₀ O	1.5
Isooctane	C ₈ H ₁₈	1.1
Isooctanol	C ₈ H ₁₈ O	1.7
Isopentane	C ₅ H ₁₂	5
Isopentanol	C ₅ H ₁₂ O	2
Isopentene	C ₅ H ₁₀	0.8
Isophorone	C ₉ H ₁₄ O	0.8
Isophorone diisocyanate	C ₁₂ H ₁₈ N ₂ O ₂	0.6
Isoprene	C₅H ₈	0.9
Isopropanol	C ₃ H ₈ O	4
Isopropanolamine	C ₃ H ₉ NO	1.5
Isopropoxyethanol, 2-	C ₅ H ₁₂ O ₂	1.2
Isopropoxyethyl acetate, 2-	C ₇ H ₁₄ O ₂	1.2
Isopropyl acetate	C ₅ H ₁₀ O ₂	2.4
Isopropyl chloroformate	C ₄ H ₇ O ₂ CI	1.6
Isopropyl mercaptan	C ₃ H ₈ S	0.6
Isopropyl nitrite	C ₃ H ₇ NO ₂	4
Isopropylamine	C ₃ H ₉ N	1
Isopropylaminoethanol, 2-	C ₅ H ₁₃ NO	2
Isopropylcyclohexane	C ₉ H ₁₈	0.7
Isothiazole	C ₃ H ₃ NS	3
Isovaleraldehyde	C ₅ H ₁₀ O	1.3
Isovaleric Acid	C ₅ H ₁₀ O ₂	5.5
Jasmal	C ₁₁ H ₂₂ O ₃	1.4
Jasmone, cis-	C ₁₁ H ₁₆ O	0.5
Jet Fuel Jp-4		0.8
Jet Fuel Jp-5		0.7
Jet Fuel Jp-8		0.7
Kerosene		0.8
Ketene	C ₂ H ₂ O	3
Linalool oxide	C ₁₀ H ₁₈ O ₂	0.6
Linalyl acetate	C ₁₂ H ₂₀ O ₂	1.1
Liquefied petroleum gas		40
Maleic anhydride	C ₄ H ₂ O ₃	2
Menthol	C ₁₀ H ₂₀ O	0.9



Gas / Chemical / Vapor	Formula	Response Factor
Menthone	C ₁₀ H ₁₈ O	0.4
Mercaptoacetic acid	C ₂ H ₄ O ₂ S	1
Metaldehyde	C ₈ H ₁₆ O ₄	10
Methacrolein	C ₄ H ₆ O	1.5
Methacrylamide	C ₄ H ₇ NO	2
Methacrylic acid	C ₄ H ₆ O ₂	2.3
Methacrylonitrile	C₄H₅N	5
Methoxy-1-butanol, 3-	C ₅ H ₁₂ O ₂	3
Methoxy-1-propanol, 2-	C ₄ H ₁₀ O ₂	2
Methoxy-2,2-dimethylpropane	C ₆ H ₁₄ O	0.9
Methoxybutyl acetate, 3-	C ₇ H ₁₄ O ₃	2
Methoxyethane	C ₃ H ₈ O	1
Methoxyethanol, 2-	C ₃ H ₈ O ₂	3
Methoxyethene	C ₃ H ₆ O	1
Methoxyethoxyethanol, 2-	C ₅ H ₁₂ O ₃	1.4
Methoxyethyl acetate, 2-	C ₅ H ₁₀ O ₃	5
Methoxyethyl ether, 2-	C ₆ H ₁₄ O ₃	1
Methoxymethylethoxy-2-propanol	C ₇ H ₁₆ O ₃	1.3
Methoxypropan-2-ol, 1-	C ₄ H ₁₀ O ₂	1.6
Methoxypropane, 2-	C ₄ H ₁₀ O	1.2
Methoxypropyl acetate	C ₆ H ₁₂ O ₃	1.6
Methyl 2-methylpropanoate	C ₅ H ₁₀ O ₂	2
Methyl acetate	C ₃ H ₆ O ₂	7
Methyl acetoacetate	C ₅ H ₈ O ₃	3
Methyl acrylate	C ₄ H ₆ O ₂	3.6
Methyl anthranilate	C ₈ H ₉ NO ₂	0.4
Methyl benzoate	C ₈ H ₈ O ₂	1.2
Methyl bromide	CH₃Br	1.9
Methyl dimethylacrylate	C ₆ H ₁₀ O ₂	2.5
Methyl ethyl ketone	C ₄ H ₈ O	0.96
Methyl ethyl ketone peroxides	C ₈ H ₁₈ O ₆	0.8
Methyl heptyne carbonate	C ₉ H ₁₄ O ₂	1.3
Methyl ionone	C ₁₄ H ₂₂ O	0.4
Methyl isobutyl ketone	C ₆ H ₁₂ O	0.9
Methyl isocyanate	C ₂ H ₃ NO	5
Methyl isopropyl ketone	C ₅ H ₁₀ O	0.99
Methyl isothiocyanate	C ₂ H ₃ NS	0.6

Gas / Chemical / Vapor	Formula	Response Factor
Methyl mercaptan	CH₄S	0.7
Methyl methacrylate	C ₅ H ₈ O ₂	1.31
Methyl phenylacetate	C ₉ H ₁₀ O ₂	0.4
Methyl propargyl ether	C ₄ H ₆ O	2
Methyl propionate	C ₄ H ₈ O ₂	3.8
Methyl propynoate	C ₄ H ₄ O ₂	10
Methyl salicylate	C ₈ H ₈ O ₃	0.8
Methyl sulfide	C ₂ H ₆ S	0.8
Methyl tert-butyl ether	C ₅ H ₁₂ O	1
Methyl thiocyanate	C ₂ H ₃ NS	2.2
Methyl thioglycolate	C ₃ H ₆ O ₂ S	2
Methyl vinyl ketone	C ₄ H ₆ O	0.6
Methyl-1-butene, 2-	C ₅ H ₁₀	0.8
Methyl-1-butene, 3-	C ₅ H ₁₀	0.8
Methyl-2-butanol, 3-	C ₅ H ₁₂ O	3.3
Methyl-2-butenal, 3-	C₅H ₈ O	1
Methyl-2-hexenoic acid, trans-3-	C ₇ H ₁₂ O ₂	1.5
Methyl-2-propen-1-ol, 2-	C ₄ H ₈ O	1.3
Methyl-2-pyrrolidinone, N-	C ₅ H ₉ NO	0.9
Methyl-5-hepten-2-one, 6-	C ₈ H ₁₄ O	0.63
Methylamine	CH₅N	1.5
Methylbutan-1-ol, 3-	C ₅ H ₁₂ O	2.3
Methylbutanal, 2-	C ₅ H ₁₀ O	1.2
Methylbutyric acid, 2-	C ₅ H ₁₀ O ₂	6
Methylcyclohexane	C ₇ H ₁₄	1.1
Methylcyclohexanol	C ₇ H ₁₄ O	2.4
Methylcyclohexanol, 4-	C ₇ H ₁₄ O	2.4
Methylcyclohexanone, 2-	C ₇ H ₁₂ O	1
Methylcyclopentane	C ₆ H ₁₂	2.5
Methylcyclopentene, 1-	C ₆ H ₁₀	1.5
Methylenepentane, 3-	C ₆ H ₁₂	0.9
Methylheptan-3-one, 5-	C ₈ H ₁₆ O	0.77
Methylhexan-2-one, 5-	C ₇ H ₁₄ O	0.7
Methylhydrazine	CH ₆ N ₂	1.3
Methylmorpholine, N-	C ₅ H ₁₁ NO	1.2
Methylolacrylamide, N-	C ₄ H ₇ NO ₂	2
Methylpent-3-en-2-one, 4-	C ₆ H ₁₀ O	0.6

Gas / Chemical / Vapor	Formula	Response Factor
Methylpentan-2-ol, 4-	C ₆ H ₁₄ O	1.4
Methylpentane, 2-	C ₆ H ₁₄	3
Methylpentane, 3-	C ₆ H ₁₄	2.5
Methylpentane-2,4-diol, 2-	C ₆ H ₁₄ O ₂	4
Methylpropanoyl chloride, 2-	C ₄ H ₇ CIO	8
Methylpyrrole, N-	C₅H ₇ N	0.9
Methylstyrene	C ₉ H ₁₀	0.57
Methylthiopropional, 3-	C ₄ H ₈ OS	2
Methylundecanal, 2-	C ₁₂ H ₂₄ O	1
Mineral oil		0.8
Mineral spirits		0.6
Monoisobutanolamine	C ₄ H ₁₁ NO	1.6
Morpholine	C ₄ H ₉ NO	4
Myrcene	C ₁₀ H ₁₆	0.49
Naphtha, heavy aromatic		0.4
Naphtha, hydrotrated heavy		1
Naphtha, light aromatic		0.5
Naphtha, medium aliphatic		0.8
Naphthalene	C ₁₀ H ₈	0.63
Naphthol methyl ether, 2-	C ₁₁ H ₁₀ O	0.5
Neopentane	C ₅ H ₁₂	3
Neopentyl alcohol	C ₅ H ₁₂ O	2
Nitric oxide	NO	8
Nitrobenzene	C ₆ H ₅ NO ₂	1.7
Nitrogen dioxide	NO ₂	13
Nonanal	C ₉ H ₁₈ O	1.3
Nonane	C ₉ H ₂₀	1.4
Nonanol (mixed isomers)	C ₉ H ₂₀ O	1.2
Nonene (mixed isomers)	C ₉ H ₁₈	0.6
Nonene, 1-	C ₉ H ₁₈	0.6
Norbornadiene, 2,5-	C ₇ H ₈	0.6
Octalactone, gamma-	C ₈ H ₁₄ O	3
Octamethylcyclotetrasiloxane	C ₆ H ₁₂ O ₄ Si ₄	0.3
Octamethyltrisiloxane	C ₈ H ₂₄ O ₂ Si ₃	0.26
Octanal	C ₈ H ₁₆ O	1.1
Octane	C ₈ H ₁₈	1.6
Octanol	C ₈ H ₁₈ O	1.6

Gas / Chemical / Vapor	Formula	Response Factor
Octene (mixed isomers)	C ₈ H ₁₆	0.7
Octene, 1-	C ₈ H ₁₆	0.7
Oxalyl bromide	C ₂ Br ₂ O ₂	5
Paraffin wax, fume		1
Paraffins, normal		1
Paraldehyde	C ₆ H ₁₂ O ₃	2.2
Pentacarbonyl iron	FeC ₅ O ₅	1
Pentan-2-one	C ₅ H ₁₀ O	0.99
Pentan-3-one	C ₅ H ₁₀ O	0.77
Pentanal	C ₅ H ₁₀ O	1.5
Pentandione, 2,4-	C ₅ H ₈ O ₂	1.2
Pentane	C ₅ H ₁₂	7
Pentanoic acid	C ₅ H ₁₀ O ₂	8
Pentanol, 2-	C ₅ H ₁₂ O	2
Pentanol, 3-	C ₅ H ₁₂ O	1.7
Pentene, 1-	C ₅ H ₁₀	0.92
Pentene, cis-2-	C ₅ H ₁₀	0.9
Pentene, trans-2-	C ₅ H ₁₀	0.9
Pentylcyclopentan-1-one, 2-	C ₁₀ H ₁₈ O	1
Pentylcyclopentane	C ₁₀ H ₂₀	1.1
Pentyne, 1-	C ₅ H ₈	3
Perfluorobutadiene	C ₄ F ₆	3
Perfluoro-tert-butylamine	$C_4H_2F_9N$	5
Petroleum ether		0.9
Phellandrene	C ₁₀ H ₁₆	0.8
Phenethyl methyl ether, 2-	C ₉ H ₁₂ O	0.6
Phenol	C ₆ H ₆ O	0.9
Phenoxyethanol, 2-	C ₈ H ₁₀ O ₂	4.5
Phenoxyethyl acrylate, 2-	C ₁₁ H ₁₂ O ₃	1.5
Phenyl chloroformate	C ₇ H ₅ ClO ₂	1.1
Phenyl propene, 2-	C ₉ H ₁₀	0.4
Phenyl-2,3-epoxypropyl ether	C ₉ H ₁₀ O ₂	0.8
Phenylacetaldehyde	C ₈ H ₈ O	0.7
Phenylacetic acid	C ₈ H ₈ O ₂	1
Phenylcyclohexane	C ₁₂ H ₁₆	0.4
Phenylethanol, 2-	C ₈ H ₁₀ O	1.2
Phenylethyl acetate, 1-	C ₁₀ H ₁₂ O ₂	0.7

Gas / Chemical / Vapor	Formula	Response Factor
Phenylethyl isobutyrate, 2-	C ₁₂ H ₁₆ O ₂	1.5
Phosphine	PH ₃	2
Picoline, 3-	C ₆ H ₇ N	0.7
Pine oil		1
Pinene	C ₁₀ H ₁₆	0.4
Pinene, α-	C ₁₀ H ₁₆	0.34
Pinene, β-	C ₁₀ H ₁₆	0.5
Piperazine	C ₄ H ₁₀ N ₂	0.8
Piperidine	C ₅ H ₁₁ N	1
Piperylene	C₅H ₈	0.9
Prop-2-yn-1-ol	C ₃ H ₄ O	3.7
Propadiene	C ₃ H ₄	1
Propan-1-ol	C ₃ H ₈ O	5.4
Propanamide	C ₃ H ₇ NO	2
Propane-1,2-diol	C ₃ H ₈ O ₂	3
Propanolamine	C ₃ H ₉ NO	1.5
Propargyl chloride	C ₃ H ₃ CI	8.4
Propen-1-imine, 2-	C₃H₅N	2
Propene	C ₃ H ₆	1.4
Propiolic acid	C ₃ H ₂ O ₂	8
Propionaldehyde	C ₃ H ₆ O	3
Propionic acid	C ₃ H ₆ O ₂	10
Propoxy-2-propanol, 1-	C ₆ H ₁₄ O ₂	1.2
Propyl acetate, n-	C ₅ H ₁₀ O ₂	3
Propyl butanoate	C ₇ H ₁₄ O ₂	1.3
Propyl formate	C ₄ H ₈ O ₂	19
Propyl iodide	C ₃ H ₇ I	1
Propyl mercaptan	C₃H ₈ S	1
Propylamine, n-	C₃H ₉ N	1.1
Propylbenzene	C ₉ H ₁₂	0.5
Propylbenzene (all isomers)	C ₉ H ₁₂	0.5
Propylbenzene, 2-	C ₉ H ₁₂	0.6
Propylene carbonate	C ₄ H ₆ O ₃	15
Propylene glycol ethyl ether acetate	C ₇ H ₁₄ O ₃	1.2
Propylene oxide	C ₃ H ₆ O	6
Propyleneimine	C₃H ₇ N	1.4
Propyne	C ₃ H ₄	4

Gas / Chemical / Vapor	Formula	Response Factor
Pyrazine	C ₄ H ₄ N ₂	3
Pyridine	C ₅ H ₅ N	0.7
Pyridinol, 4-	C₅H₅NO	3
Pyridylamine, 2-	C ₅ H ₆ N ₂	0.8
Pyrrole	C ₄ H ₅ N	1.4
Pyrrolidine	C ₄ H ₉ N	4
Pyruvaldehyde	C ₃ H ₄ O ₂	0.7
Rose oxide, cis-	C ₁₀ H ₁₈ O	0.8
Sec-amyl acetate	C ₇ H ₁₄ O ₂	5
Stibine	SbH₃	1.5
Styrene	C ₈ H ₈	0.45
Sulfur dichloride	Cl ₂ S	2
Terpineol, α-	C ₁₀ H ₁₈ O	1
Terpinolene	C ₁₀ H ₁₆	0.6
Terpinyl acetate, α-	C ₁₂ H ₂₀ O ₂	1.2
Terpinyl methyl ether, alpha-	C ₁₁ H ₂₀ O	0.7
Tert-amyl methyl ether	C ₆ H ₁₄ O	0.8
Tert-butanol	C ₄ H ₁₀ O	1.6
Tert-butyl acetate	C ₆ H ₁₂ O ₂	1.05
Tert-butyl bromide	C ₄ H ₉ Br	0.99
Tert-butyl formate	C ₅ H ₁₀ O ₂	8
Tetrabromoethane, 1,1,2,2-	C ₂ H ₂ Br ₄	2
Tetracarbonylnickel	NiC ₄ O ₄	1
Tetrachloroethylene	C ₂ Cl ₄	0.6
Tetrachloropyridine, 2,3,5,6-	C ₅ HNCl ₄	1
Tetraethyl orthosilicate	C ₈ H ₂₀ O ₄ Si	3
Tetrafluoroethylene	C ₂ F ₄	15
Tetrahydrofuran	C ₄ H ₈ O	2.3
Tetrahydronaphthalene	C ₁₀ H ₁₂	0.4
Tetrahydropyran	C ₅ H ₁₀ O	1.5
Tetrahydrothiophene	C ₄ H ₈ S	0.7
Tetramethyl orthosilicate	C ₄ H ₁₂ O ₄ Si	2
Tetramethylbenzene (all isomers)	C ₁₀ H ₁₄	0.3
Tetramethylbutane, 2,2,3,3-	C ₈ H ₁₈	1
Tetramethyldisiloxane, 1,1,3,3-	C ₄ H ₁₄ OSi ₂	1
Tetramethylgermane	C ₄ H ₁₂ Ge	2
Tetramethylguanidine, N,N,N',N'	C ₅ H ₁₃ N ₃	0.6

Gas / Chemical / Vapor	Formula	Response Factor
Tetramethylsilane	C ₄ H ₁₂ Si	2
Thioacetic acid	C ₂ H ₄ OS	1.4
Thioanisole	C ₇ H ₈ S	0.6
Thiocarbonyl fluoride	CSF ₂	6
Thiocyanogen	C ₂ S ₂ N ₂	8
Thioformaldehyde trimer	C ₃ H ₆ S ₃	1.5
Thiophene	C ₄ H ₄ S	0.46
Thiophosgene	CSCI ₂	1
Thymol	C ₁₀ H ₁₄ O	0.7
Titanium-n-propoxide	C ₁₂ H ₂₈ O ₄ Ti	3
Toluene	C ₇ H ₈	0.56
Toluene-2,4-diisocyanate	C ₉ H ₆ N ₂ O ₂	1.6
Toluenesulfonyl chloride, p-	C ₇ H ₇ SO ₂ CI	3
Toluidine, o-	C ₇ H ₉ N	0.5
Tolylaldehyde, p-	C ₈ H ₈ O	0.8
Triazine, 1,3,5-	C ₃ H ₃ N ₃	6
Tributyl phosphate	C ₁₂ H ₂₇ O ₄ P	5
Tributylamine	C ₁₂ H ₂₇ N	1
Trichlorobenzene, 1,2,4-	C ₆ H ₃ Cl ₃	0.6
Trichloroethylene	C ₂ HCl ₃	0.6
Triethyl borate	C ₆ H ₁₅ O ₃ B	5
Triethyl phosphate	C ₆ H ₁₅ O ₄ P	1.2
Triethyl phosphite	C ₆ H ₁₅ O ₃ P	1.5
Triethylaluminum	C ₆ H ₁₅ AI	1
Triethylamine	C ₆ H ₁₅ N	1.3
Triethylbenzene	C ₁₂ H ₁₈	0.4
Triethylsilane	C ₆ H ₁₆ Si	2
Trifluoroethene	C ₂ HF ₃	5
Trifluoroethyl methyl ether, 2,2,2-	C ₃ H ₅ F ₃ O	10
Trifluoroiodomethane	CF ₃ I	2
Trimethoxymethane	C ₄ H ₁₀ O ₃	4
Trimethoxyvinylsilane	C ₅ H ₁₂ O ₃ Si	2
Trimethyl phosphate	C ₃ H ₉ O ₄ P	4
Trimethyl phosphite	C ₃ H ₉ O ₃ P	2
Trimethylamine	C ₃ H ₉ N	0.5
Trimethylbenzene mixtures	C ₉ H ₁₂	0.3
Trimethylbenzene, 1,2,4-	C ₉ H ₁₂	0.6

Gas / Chemical / Vapor	Formula	Response Factor
Trimethylbenzene, 1,3,5-	C ₉ H ₁₂	0.4
Trimethylcyclohexane, 1,2,4-	C ₉ H ₁₈	1
Trimethylene oxide	C ₃ H ₆ O	1.5
Trimethylsilane	C ₃ H ₁₀ Si	1
Trioxane	C ₃ H ₆ O ₃	13
Turpentine	C ₁₀ H ₁₆	0.6
Turpentine oil	C ₁₀ H ₁₆	0.6
TVOC		1
Undecane	C ₁₁ H ₂₄	1.1
Vanillin	C ₈ H ₈ O ₃	1
Vinyl acetate	C ₄ H ₆ O ₂	1.5
Vinyl bromide	C ₂ H ₃ Br	1.5
Vinyl chloride	C ₂ H ₃ CI	2.1
Vinyl ethyl ether	C ₄ H ₈ O	1
Vinyl fluoride	C ₂ H ₃ F	2
Vinyl-2-pyrrolidinone, 1-	C ₆ H ₉ NO	4.5
Vinylcyclohexene	C ₈ H ₁₂	0.47
Vinylene carbonate	C ₃ H ₂ O ₃	3.5
Vinylidene difluoride	$C_2H_2F_2$	5
Vinylsilane	C ₂ H ₆ Si	1.5
Xylene mixed isomers	C ₈ H ₁₀	0.54
Xylene, m-	C ₈ H ₁₀	0.5
Xylene, o-	C ₈ H ₁₀	0.5
Xylene, p-	C ₈ H ₁₀	0.55
Xylidine, all	C ₈ H ₁₁ N	0.7

51 | Page

REV - 1.0

13 Product limited warranty

AimSafety warrants this product will be free from defective materials and workmanship for a period of two (2) years from date of manufacture, provided it is maintained and used in accordance with AimSafety instructions and/or recommendations. If any component becomes defective during the warranty period, it will be replaced or repaired free of charge, if the unit is returned in accordance with the instructions below. This warranty does not apply to units that have been altered or had repair attempted, or that have been subjected to abuse, accidental or otherwise. The above warranty is in lieu of all other express warranties, obligations or liabilities. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE ARE LIMITED TO A PERIOD OF TWO (2) YEARS FROM THE PURCHASE DATE. AimSafety shall not be liable for any incidental or consequential damages for breach of this or any other warranty, express or implied, arising out of or related to the use of said gas monitor. Manufacturer or its agent's liability shall be limited to replacement or repair as set forth above. Buyer's sole and exclusive remedies are return of the goods and repayment of the price, or repair and replacement of non-conforming goods or parts.

Warranty Procedure

Contact the local AimSafety authorized reseller or AimSafety Technical Support to obtain a Return Materials Authorization (RMA). An RMA requires the following information:

- Company name, contact name, phone number, and email address
- Description and quantity of items to be returned
- Equipment serial number(s)
- Reason for return

No returns shall be accepted without an AimSafety RMA. Any returns received without an RMA will be rejected and returned to the sender.

AimSafety by Macurco

1504 W. 51st Street Sioux Falls, SD 57105

Technical Support Contact Information

Phone: 1-844-325-3050 **Fax:** 1-605-951-9616

Email: <u>support@aimsafety.com</u> **Website:** www.aimsafety.com/service/

Rev – 1.0

Issue Date: 11/12/2024 Document No: 34-2900-0000-2

© Macurco Inc. 2024. All rights reserved.

General Contact Information

Phone: 1-877-367-7891

Fax: 1-605-951-9616

Email: info@aimsafety.com

Website: www.aimsafety.com

REV – 1.0 [34-2900-0000-2] 52 | Page

